Soil Association

Farm carbon footprinting

Poppy Johnson

The Low Carbon Farming project is being carried our in partnership with Campden BRI and is part financed by the European Agricultural Fund for European Development 2007-2013: Europe investing in rural areas

Introduction

- Brief overview of the Low Carbon Farming Project's aims and activities
- Experience of existing carbon footprinting tools
- Outline of 'improvement monitoring' toolkit

Low Carbon Farming Project

Background

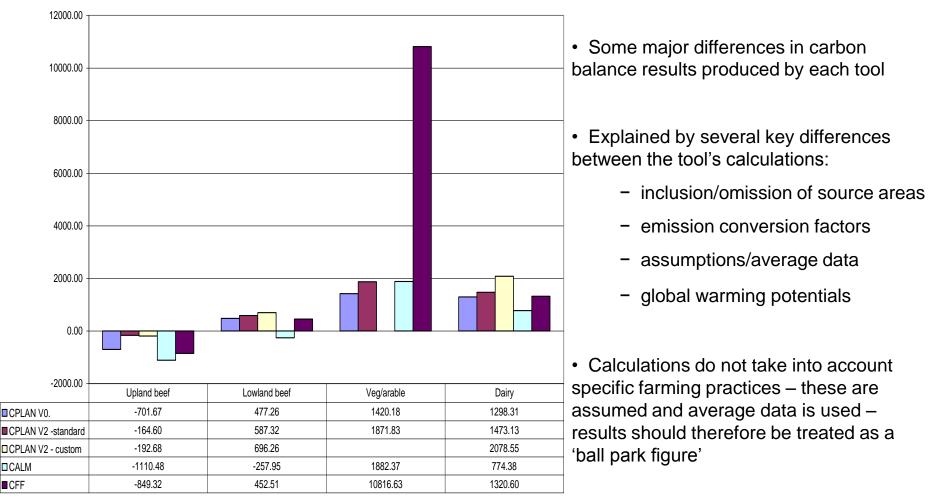
- Launched in Spring 2011, funded until June 2013
- Funded by SW RDPE and Ashden Trust
- SWARM knowledge hub project coordinated by Duchy College

<u>Aims</u>

- Raise farmer awareness of on-farm greenhouse gases
- Encourage and promote practical change and continuous improvement
- Provide and disseminate high quality information and advice

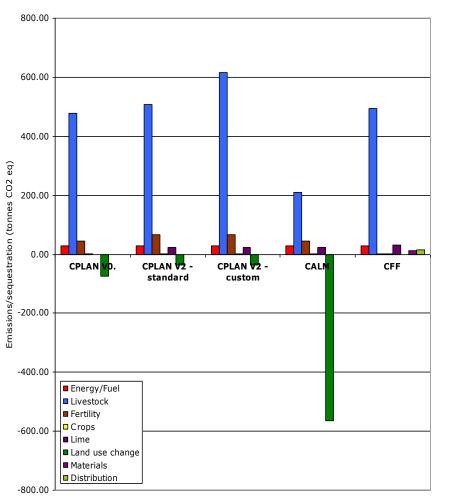
Activities

- Information/factsheets
- On-farm training events
- Case studies
- Footprinting guidelines
- Toolkit monitoring continuous improvement



Experiences of farm carbon footprinting

- Review of existing tools using real farm data to illustrate and explain the differences between the tools and assess their suitability for monitoring improvements made.
- Tools used:
 - CALM
 - CFF carbon calculator
 - CPLAN v.0 and v.2
- These are all tools intended for general use on farm by farmers



Carbon balance results from tools reviewed

A closer look at the results...

Comparison of results from different tools

BUT the tool all show similar general trends in the proportion of <u>emissions</u> attributable to each area of the farm.

Example - lowland beef

All tools agree that

- Livestock = highest emissions
- Fertility
- Energy and fuel use
- Lime
- Crops = lowest emissions

Where they don't agree is with regards to sequestration

Conclusions from calculator review

- Useful to highlight 'hot spot' areas of emissions
- Not so useful for monitoring emission reductions
 - not 'farm specific' enough
 - not sensitive enough to detect changes in farming practice
 - only way to dramatically reduce footprint result from these tools for organic production is to reduce livestock numbers, reduce crop production, plant trees
- In order to monitor improvements in carbon emissions and sequestration made through changes in farm practice we need something different...

'Improvement monitoring' toolkit

• 4 key areas of assessment based on abatement potential and practical application on farm

- carbon sequestration (soil, woodland, natural farm infrastructure)
- nutrient management (nutrient and manure management)
- livestock production (optimising production to reduce emission intensity)
- energy and fuel use (audit of use on farm)
- Qualitative assessment of farm practices and their impact on GHG emissions and carbon sequestration
 - practice scored worst to best
- Some quantitative assessment where possible and where measurable improvement can be made
 - e.g. energy/fuel use audit, nutrient balance
- Results can be compared year or year to monitor progress made

- an improved score will reflect adoption of 'better practice' and reduced emissions/increase sequestration on the farm.

• Toolkit supported by technical advice and information to help implement and encourage changes in farming practice

Conclusions

- Existing tools for general farm use are ok but only as an 'identifier' for potential emission hotspots a 'ball park figure' to highlight areas with high emissions
- Organic farmers can reduce their contribution to UK GHG emissions through changes in farm practice which minimise emissions and more importantly promote carbon sequestration while optimising their particular system
- Watch this space for the creation of our 'improvement monitoring' toolkit coming later this year...

Thank you for your time!